国外研究表明手性磁体材料可提高类脑计算适应性
导言:英国伦敦大学学院、伦敦帝国理工学院领导的国际合作研究表明,利用手性(扭曲)磁体的内在物理特性,可提高机器学习任务适应性,大幅减少类脑计算的能源使用。研究结果发表在《自然·材料》杂志上。
英国伦敦大学学院、伦敦帝国理工学院领导的国际合作研究表明,利用手性(扭曲)磁体的内在物理特性,可提高机器学习任务适应性,大幅减少类脑计算的能源使用。研究结果发表在《自然·材料》杂志上。
传统计算由于独立的数据存储和处理单元需要消耗大量电力。机器学习利用物理储层计算方法,消除对独特内存和处理单元的需求,促进更有效的数据处理方式,成为传统计算更可持续的替代方案。但该方法的缺陷在于缺乏可重新配置性,执行不同计算任务时效果存在差异,这是由材料物理特性导致的。
科研团队使用手性(扭曲)磁体作为计算介质,利用矢量网络分析仪确定其在不同磁场强度和-269°C到室温范围内温度下的能量吸收。研究发现,通过施加外部磁场和改变温度,可以调整这些材料的物理特性以适应不同的机器学习任务,不同磁相对不同类型计算任务具有像人脑一样好的执行效果。
本文摘自国外相关研究报道,文章内容不代表本网站观点和立场,仅供参考。
免责声明:
※ 以上所展示的信息来自媒体转载或由企业自行提供,其原创性以及文中陈述文字和内容未经本网站证实,对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本网站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。如果以上内容侵犯您的版权或者非授权发布和其它问题需要同本网联系的,请在30日内进行。
※ 有关作品版权事宜请联系中国企业新闻网:020-34333079 邮箱:cenn_gd@126.com 我们将在24小时内审核并处理。
标签 :
相关网文
一周新闻资讯点击排行