KubeCon热点报告:AIStation调度平台实现RoCE网络下大模型的高效稳定训练
2023/10/16 16:05:40 来源:中国企业新闻网
导言:近日,在KubeCon + CloudNativeCon + Open Source Summit China 2023大会(简称"开源技术峰会")上,浪潮信息分享了"基于Kubernetes+RoCEv2构建大规模AI基础设施与大模型训练实践"主题报告,介绍了浪潮信息在大模型开发过程中,尤其在大规模RoCE网络的使用场景,如何通过AIStation人工智能算力调度平台满足大模型训练的稳定性和效率要求,实现高效长时间持续训练。
近日,在KubeCon + CloudNativeCon + Open Source Summit China 2023大会(简称"开源技术峰会")上,浪潮信息分享了"基于Kubernetes+RoCEv2构建大规模AI基础设施与大模型训练实践"主题报告,介绍了浪潮信息在大模型开发过程中,尤其在大规模RoCE网络的使用场景,如何通过AIStation人工智能算力调度平台满足大模型训练的稳定性和效率要求,实现高效长时间持续训练。
KubeCon + CloudNativeCon + Open Source Summit是Linux基金会、云原生计算基金会(CNCF)主办的开源和云原生领域的旗舰盛会,在业界享有极高的声誉,来自谷歌、亚马逊、英特尔、Hugging Face等知名企业的近百位全球技术专家及行业领袖齐聚本届大会,带来最前沿的云原生相关技术成果和技术洞察。
大模型训练遇RoCE网络性能低、断点难题
大模型是当前通用人工智能产业发展创新的核心技术。但大模型训练过程非常复杂,面临诸多挑战。
一方面,大模型训练对通信的要求非常高。为了获得最优的训练效果,单台GPU服务器会搭载多张InfiniBand、ROCE等高性能网卡,为节点间通信提供高吞吐、低时延的服务。但不同的网络方案各有优劣,InfiniBand因性能优异已被公认为大模型训练的首选,但其成本较高;RoCE虽然成本较低,但在大规模的网络环境下,其性能和稳定性不如InfiniBand方案。因此要想满足大模型训练对通信的要求,就要对集群网络中的通信设备适配使用和网络情况进行探索和设计。
另一方面,大模型训练周期通常长达数月,集群计算效力低、故障频发且处理复杂,会导致训练中断后不能及时恢复,从而降低大模型训练的成功率,也会使得训练成本居高不下。Meta在训练Open Pre-trained Transformer (OPT)-175B大模型时,遇到的一大工程问题就是训练不稳定,Meta训练日志显示两个星期内因硬件、基础设施或实验稳定性问题重新启动了40多次。
AIStation实现RoCE网络下大模型高效稳定训练
针对大模型研发和应用各环节的诸多挑战,浪潮信息发布了大模型智算软件栈OGAI(Open GenAI Infra)——"元脑生智",为大模型业务提供了全栈全流程的智算软件栈。OGAI软件栈由5层架构组成,其中L2层AIStation针对大模型训练中常见的"RoCE网络性能和稳定性低"、"训练中断"难题,提供了性能和兼容性俱佳的网络方案和断点续训能力,为大模型训练保驾护航。
1. 优化RoCE网络下的大模型训练,提升网络性能和稳定性
AIStation能够制定合理的作业执行计划,以最大限度地利用资源,满足训练任务的时延和吞吐需求。AIStation优化调度系统性能,实现了上千POD极速启动和环境就绪。尤其AIStation对大规模RoCE无损网络下的大模型训练也做了相应优化,实测网络性能稳定性达到了业界较高水平。
AIStation通过PFC+ECN构建无损以太网络,在交换机侧控制方面,PFC在数据链路层基于报文-队列优先级,在交换机入口侧进行拥塞控制,ECN在网络层基于数据包头中的标识位,在交换机出口侧进行拥塞控制。主机容器侧控制则为Kubernetes的Pod,基于Linux、OFED驱动进行拥塞控制。该方案资源使用灵活,且经过多轮次的GPU分配与回收,解决了GPU分布的碎片化问题。
基于PFC+ECN构建无损以太网络
在大模型训练场景,AIStation通过Calico构建元数据交换网络,基于物理RoCE网卡构建RDMA通讯网络,并通过CNI和虚拟化插件实现IP分配,使POD内大模型训练任务能够充分利用NCCL的PXN等通信优化特性,实现网络的高效使用。
借助AIStation平台,某大型商业银行完成了主流大模型训练框架,如DeepSpeed、Megatron-LM和大语言模型在RoCE网络环境下的训练,快速实现大模型的落地实践。
2. 内置监控系统和智能运维模块,保障大模型稳定训练
健壮性与稳定性是高效完成大模型训练的必要条件。利用AIStation内置的监控全面的监控系统和智能运维模块,可以快速定位芯片、网卡、通讯设备异常或故障。同时对训练任务进行暂停保持,再从热备算力中进行自动弹性替换异常节点,最后利用健康节点进行快速checkpoint读取,实现大模型断点自动续训。
大规模预训练任务的异常处理和断点续训流程
3. 自动配置环境,快速构建大模型训练任务
AIStation实现了计算、存储、网络等训练环境的自动化配置,同时允许用户自定义基本的超参数,只需简单几步,就能启动大模型分布式训练。并且,AIStation还集成了主流的大模型训练框架,包括Megatron-LM、DeepSpeed、HunggingFace上的诸多开源解决方案,实现了秒级构建运行环境。能够帮助开发者在大规模集群环境下便捷地提交分布式任务。调度系统根据分布式任务对GPU算力的需求,通过多种亲和性调度策略,大大降低构建分布式训练任务的技术门槛。
AIStation平台在AI开发、应用部署和大模型工程实践上积累了宝贵的经验和技术,帮助诸多行业客户在资源、开发、部署层面实现降本增效。在垂直行业领域,AIStation平台帮助头部金融客户、生物制药服务公司快速利用密集数据训练、验证大模型,大大降低大模型业务成本。某大型商业银行基于AIStation打造的并行运算集群,凭借领先的大规模分布式训练支撑能力,荣获2022 IDC"未来数字基础架构领军者"奖项。
浪潮信息AIStation在大模型方面已经取得了诸多业界领先的经验和积累,实现了端到端的优化,是更适合大模型时代的AI算力调度平台。未来AIStation进一步通过低代码、标准化的大模型开发流程,以及低成本和高效的推理服务部署,帮助客户快速实现大模型开发和落地,加速生成式AI发展。
免责声明:
※ 以上所展示的信息来自媒体转载或由企业自行提供,其原创性以及文中陈述文字和内容未经本网站证实,对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本网站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。如果以上内容侵犯您的版权或者非授权发布和其它问题需要同本网联系的,请在30日内进行。
※ 有关作品版权事宜请联系中国企业新闻网:020-34333079 邮箱:cenn_gd@126.com 我们将在24小时内审核并处理。
标签 :
相关网文
一周新闻资讯点击排行